

March 2014

The Corporation of the Town of Cobourg Building and Planning Department

55 King Street West
Cobourg, ON, K9A 2M2
905-372-1005

# TOWN OF COBOURG <br> DECK GUIDE 

## DEFINITIONS

A 'Deck' is a raised uncovered platform that is attached to a dwelling. A deck will generally require a Building Permit and will require protective guards if it has a walking surface greater than 24 " above grade.

A 'Porch' is a covered structure that usually forms part of the entrance of a dwelling. It may be enclosed or unenclosed. Any Porch requires a Building Permit and will require protective guards if it has a walking surface greater than 24 " above grade.

A 'Patio' is an uncovered platform at grade level that is usually constructed of concrete or stone. A Patio generally does not require a Building Permit, unless it interferes with an existing structure.

NOTE: All Decks, Porches, Patios, and other structures must conform to the Town's Zoning ByLaw requirements.

## IMPORTANT NOTES

A Deck is a floor system, the same as that within the dwelling unit, and must be designed accordingly.

The design and construction of the Deck must conform to the requirements of the current amended version of the Ontario Building Code as well as all other applicable by-laws.

Special consideration must be taken if the Deck is to be used to support a hot tub or similar structure due to the increased load.

This guide is for informational purposes only. It is the responsibility of the Applicant/Designer to review the building code to ensure all information is complete, accurate, and up to date.

This Deck Guide should be read in conjunction with "Building Permits - A Homeowners Guide"


## EXAMPLE DRAWING

-THIS EXAMPLE DRAWING CONTAINS THE MINIMUM REQUIRED INFIRMATIDN FGR BUILDING PERMIT SUBMISSIDN.
-THIS DRAWING IS AN EXAMPLE GNLY AND ALL SUBMISSIONS MUST CINFARM TI THE CURRENT VERSIIN OF THE ONTARID BUILDING CDDE.



## GENERAL INFORMATION

## PIERS

General:
-Piers used shall be not less than $8^{\prime \prime}$ in diameter.
NOTE: Under most circumstances it may be preferable to expand the lower portion of a smaller pier to achieve the required bearing area rather than use a large pier size.

Size: Table 9.15.3.4.
Minimum Footing Size $=0.40\left(4.3 \mathrm{ft}^{2}\right)$ where; the supported joist length is $4.90\left(16^{\prime}\right)$, the pier spacing is 3.00 (10'), and the soil bearing capacity is 75 kPa ( 10.9 psi ). Minimum size specified may be adjusted based on the specific supported joist length, pier spacing, and soil bearing capacity. NOTE: The minimum required bearing area must be doubled where the soil bearing capacity is affected by a high water table.

| MINIMUM REQUIRED BEARING AREA [ft ${ }^{2}$ ] (Typical Bearing Dimensions) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75kPa Soil Bearing Capacity |  | Beam Length / Pier Spacing (ft) |  |  |  |  |  |
|  |  | $4 '$ | 6 ' | 8' | 10' | 12' | 14' |
|  | 4' | $\begin{gathered} 0.43 \mathrm{ft}^{2} \\ \left(10^{\prime \prime} \varnothing\right. \text { or } \\ \left.8^{\prime \prime} \times 8^{\prime \prime}\right) \end{gathered}$ | $\begin{aligned} & 0.65 \mathrm{ft}^{2} \\ & \left(12 \mathrm{l}^{20} \varnothing \mathrm{or}\right. \\ & 10^{\left.\prime \prime \times 10^{\prime \prime}\right)} \end{aligned}$ | $\begin{aligned} & 0.86 \mathrm{ft}^{2} \\ & \left(144^{\prime \prime} \quad\right. \text { or } \\ & \left.12^{\prime \prime} \times 12^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.08 \mathrm{ft}^{2} \\ & \left(144^{0} \varnothing \mathrm{or}\right. \\ & \left.13^{\prime \prime} \times 13^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.29 \mathrm{ft}^{2} \\ & \left(11^{0} \quad \varnothing\right. \text { or } \\ & \left.14^{\prime \prime} \times 14^{\prime \prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.51 \mathrm{ff}^{2} \\ & \left(18^{\prime \prime} \varnothing\right. \text { or } \\ & \left.15^{\prime \prime} \times 15^{\prime \prime}\right) \end{aligned}$ |
|  | 6 ' | $\begin{aligned} & 0.65 \mathrm{ft}^{2} \\ & \left(12 \mathrm{l}^{2} \varnothing\right. \text { or } \\ & \left.10^{\prime \prime} \times 10^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 0.97 \mathrm{ft}^{2} \\ & \left(14{ }^{2} \varnothing\right. \text { or } \\ & \left.12^{\prime \prime} \times 12^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.29 \mathrm{ft}^{2} \\ & \left(16^{\prime \prime} \varnothing\right. \text { or } \\ & \left.14^{\prime \prime} \times 14^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.61 \mathrm{ft}^{2} \\ & \left(18{ }^{2}, \underline{\text { or or }}\right. \\ & \left.16^{\prime \prime} \times 16^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.94 \mathrm{ft}^{2} \\ & \left(200^{2} \varnothing \mathrm{or}\right. \\ & \left.17^{\prime \prime} \times 17^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.26 \mathrm{ft}^{2} \\ & \left(22^{2} \varnothing\right. \text { or } \\ & \left.19 \times 19^{\prime \prime}\right) \end{aligned}$ |
|  | 8' | $\begin{gathered} 0.86 \mathrm{ft}^{2} \\ (14 " \varnothing \text { or } \\ \left.8^{\prime \prime} \times 8^{\prime \prime}\right) \end{gathered}$ | $\begin{aligned} & 12.29 \mathrm{ft}^{2} \\ & \left(11^{\prime \prime} \varnothing\right. \text { or } \\ & \left.14^{\prime \prime} \times 14^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.72 \mathrm{ft}^{2} \\ & \left(18^{\prime \prime} \varnothing\right. \text { or } \\ & \left.16^{\prime \prime} \times 16^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.15 \mathrm{ft}^{2} \\ & \left(20{ }^{2} \varnothing\right. \text { or } \\ & \left.18^{\prime \prime} \times 18^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.58 \mathrm{ft}^{2} \\ & \left(22^{\circ} \varnothing\right. \text { or } \\ & \left.20^{\prime \prime} \times 20^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 3.01 \mathrm{ft}^{2} \\ & \left(24{ }^{4 \prime \varnothing}\right. \text { or } \\ & \left.21^{\prime \prime} \times 21^{\prime \prime}\right) \end{aligned}$ |
|  | 10' | $\begin{aligned} & 1.08 \mathrm{ft}^{2} \\ & (14 " \varnothing \text { or } \\ & \left.13^{\prime \prime} \times 13^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 14 \times 14 \mathrm{ft}^{2} \\ & \left(18^{8} \varnothing\right. \text { or } \\ & \left.16^{\prime \prime} \times 16^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.15 \mathrm{ft}^{2} \\ & \left(200^{\prime \prime} \varnothing\right. \text { or } \\ & 18^{\prime \prime} \times 18^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 2.69 \mathrm{ft}^{2} \\ & \left(24 \mathrm{o}^{2} \varnothing \mathrm{or}\right. \\ & \left.20^{\prime \prime} \times 20^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 3.23 \mathrm{ft}^{2} \\ & \left(\begin{array}{l} \text { NN } / A \\ \left.22^{\prime} \times 22^{\prime \prime}\right) \end{array}\right. \end{aligned}$ | $3.76 \mathrm{ft}^{2}$ (N/A $\varnothing$ or $\left.24^{\prime \prime} \times 24^{\prime \prime}\right)$ |
|  | 12' | $\begin{aligned} & 1.29 \mathrm{ft}^{2} \\ & \left(160^{\prime \prime} \varnothing\right. \text { or } \\ & \left.14^{\prime \prime} \times 14^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 1.94 \mathrm{ft}^{2} \\ & \left(20{ }^{2} \varnothing\right. \text { or } \\ & \left.17^{\prime \prime} \times 177^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.58 \mathrm{ft}^{2} \\ & \left(220^{20} \varnothing\right. \text { or } \\ & \left.20^{\prime \prime} \times 20^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.82 \mathrm{ft}^{2} \\ & \left(24{ }^{2} \varnothing\right. \text { or } \\ & \left.21^{\prime \prime} \times 21^{\prime \prime}\right) \end{aligned}$ | $3.87 \mathrm{ft}^{2}$ (N/A Ø or $\left.24^{\prime \prime} \times 24^{\prime \prime}\right)$ | $\begin{aligned} & 4.52 \mathrm{ft}^{2} \\ & (\mathrm{~N} / \mathrm{A} \varnothing \text { or } \end{aligned}$ $\left.26^{\prime \prime} \times 26^{\prime \prime}\right)$ |
|  | 14' | $\begin{aligned} & 1.51 \mathrm{ft}^{2} \\ & \left(8^{8} \quad \underline{\text { or }}\right. \\ & \left.15^{\prime \prime} \times 15^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 2.26 \mathrm{ft}^{2} \\ & \left(22^{2} \varnothing \mathrm{or}\right. \\ & \left.18^{\prime \prime} \times 18^{\prime \prime}\right) \end{aligned}$ | $\begin{aligned} & 3.01 \mathrm{ft}^{2} \\ & \left(24{ }^{4 \prime \varnothing}\right. \text { or } \\ & 21^{\prime \times 21 ")} \end{aligned}$ | $\begin{aligned} & 3.76 \mathrm{ft}^{2} \\ & \left(\begin{array}{l} \mathrm{N} / \mathrm{A} \varnothing \mathrm{or} \\ \left.24^{\prime} \times 24^{\prime \prime}\right) \end{array}\right. \end{aligned}$ | $4.52 \mathrm{ft}^{2}$ (N/A ø or $\left.26^{\prime \prime} \times 26^{\prime \prime}\right)$ | $5.27 \mathrm{ft}^{2}$ $\left.28^{\prime \prime} \times 28^{\prime \prime}\right)$ |
|  | 16' |  | $\begin{aligned} & 2.58 \mathrm{ft}^{2} \\ & \left(22^{2 \prime \prime} \mathrm{or}\right. \\ & \left.20^{\prime \prime} \times 20^{\circ}\right) \end{aligned}$ | $3.44 \mathrm{ft}^{2}$ (N/A $\varnothing$ or $\left.23^{\prime \prime} \times 23^{\prime \prime}\right)$ | $\begin{aligned} & 4.30 \mathrm{ft}^{2} \\ & (\mathrm{~N} / \mathrm{A} \varnothing \text { or } \\ & 25 " \times 25 ") \end{aligned}$ | $5.16 \mathrm{ft}^{2}$ (N/A Ø or $\left.28^{\prime \prime} \times 28^{\prime \prime}\right)$ | $\begin{aligned} & 6.02 \mathrm{ft}^{2} \\ & \text { (N/A } \varnothing \text { or } \end{aligned}$ $\left.30^{\prime \prime} \times 30^{\prime \prime}\right)$ |

Piers: 9.3.1.6.(1)
-Piers shall consist of poured concrete with a minimum compressive strength of 15 MPa ( 2200 psi after 28 days)

Depth: 9.12.2.2.
-Where a deck is attached to a dwelling unit or requires a guard the piers must extend a minimum of $1.2 \mathrm{~m}\left(3^{\prime}-11^{\prime \prime}\right)$ below grade.

Height: 9.15.2.3.(3)
-Piers shall not extend more than 3 times their width above grade.

## COLUMNS

Size: 9.17.4.1.(2)
-Wood columns shall be not less than 184 (7-1/4") for round columns and $140 \times 140\left(5-1 / 2^{\prime \prime} \times 5-\right.$ $1 / 2^{\prime \prime}$ ) for rectangular columns.

Anchorage: 9.23.6.2.
-Columns shall be directly fastened to their supporting and supported members to resist uplift.

## LEDGER BOARD

Size and Attachment: 9.20.17.5
-A Ledger Board shall have the same dimensions as the floor joists it supports.
-Anchor Bolts shall be embedded at least $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$ into solid concrete, concrete filled masonry, or suitable structural lumber. NOTE: The anchor bolts shall not be attached to hollow masonry or brick veneer.

| Supported <br> Length, m (ft) | Maximum Anchor Bolt Spacing, mm (in) |  |
| :---: | :---: | :---: |
|  | Staggered 12.7 mm (1/2") $\varnothing$ <br> Anchor Bolts | Staggered $16 \mathrm{~mm}\left(5 / 8^{\prime \prime}\right) \varnothing$ Anchor Bolts |
| 1.22 (4'-0") | 450 (17-3/4") | 500 (20") |
| 1.50 (4'-9") | 400 (16") | 450 (17-3/4") |
| 2.00 (6'-6") | 300 (12") | 400 (16") |
| 2.50 ( $8^{\prime}-2^{\prime \prime}$ ) | 275 (11") | 325 (12-3/4") |

## BEAMS

9.23.4.2.(3) Table A-8

|  | Maximum Span (m) |  |  |
| :---: | :---: | :---: | :---: |
| Supported Length ( m ) ${ }^{1}$ ) | $\begin{aligned} & 3-38 \times 184 \\ & (3-2 " \times 8 ") \end{aligned}$ | $\begin{gathered} 3-38 \times 235 \\ (3-2 " \times 10 ") \end{gathered}$ | $\begin{gathered} 3-38 \times 286 \\ \left(3-2^{\prime \prime} \times 12^{\prime \prime}\right) \end{gathered}$ |
| 2.40 (7.87') | 3.07 (10'-0") | 3.92 (12'-10") | 4.57 (14'-11") |
| 3.00 (9.84') | 2.85 ( $9^{\prime}-4^{\prime \prime}$ ) | 3.52 (11'-6") | 4.09 (13'-5") |
| 3.60 (11.8)) | 2.63 (8'-7") | 3.22 (10'-6") | 3.73 (12'-2") |
| 4.20 (13.7') | 2.44 (83'-0") | 2.98 (9'-9") | 3.46 (11 $\left.{ }^{\prime}-4{ }^{\prime \prime}\right)$ |
| 4.80 (15.7)) | 2.28 (7'-5") | 2.79 (9'-1") | 3.23 (10'-7") |
| 5.40 (17.7') | 2.15 (7'-0") | 2.63 (8'-7") | 3.05 (10'-0") |
| 6.00 (19.6') | 2.04 (6'-8") | 2.49 (8'-2") | 2.89 (9'-5") |

${ }^{1}{ }^{1}$ ) Supported length means half the sum of the joists spans on both sides of the beam.
*Spruce-Pine-Fir No. 1 or No. 2 Grade
Bearing: 9.17.4.1. \& 9.23.8.1.
-Beams shall a bearing surface on each of their supporting member of not less than their width and not less than $89\left(3.5^{\prime \prime}\right)$ in length.

Built-up wood: 9.23.8.3.
-Where individual members are butted together to form a joint, the joint shall occur over a support.
-Built up beams shall be nailed together with a double row of nails not less than 89 (3.5") in length, not more than $450\left(18^{\prime \prime}\right)$ apart, and not more than $100\left(4^{\prime \prime}\right)$ from the end.

JOISTS
Size \& Spacing: 9.23.4.2.(1) \& Table A-1

|  | Maximum Span (m) |  |  |
| :---: | :---: | :---: | :---: |
| Joist Size | 300 (12") o.c. | 400 (16") o.c. | 600 (24") o.c. |
| $38 \times 140$ ( $\left.{ }^{\prime \prime} \times 6{ }^{\prime \prime}\right)$ | 3.14 (10'-3") | 2.85 (9'-4") | 2.49 (8'-2") |
| $38 \times 184$ (2"x8") | 3.81 (12'-6") | 3.58 (11'-9") | 3.27 ( $10^{2}-8^{\prime \prime}$ ) |
| $38 \times 235$ ( $\mathbf{2 \prime \prime}^{\prime \prime} \times 10^{\prime \prime}$ ) | 4.44 (14'-6") | 4.17 ( $13^{\prime}-8^{\prime \prime}$ ) | 3.92 (12'-10") |
| $38 \times 286$ ( $\left.\mathbf{2}^{\prime \prime} \times 12^{\prime \prime}\right)$ | 5.01 ( $16^{\prime}-5^{\prime \prime}$ ) | 4.71 ( $15^{\prime}-5^{\prime \prime}$ ) | 4.42 (14'-6") |

*Spruce-Pine-Fir No. 1 or No. 2 Grade with Bridging
*The use of floor joists less than $38 \times 184$ ( 2 "x8") is not recommended as it does not allow for the proper attachment of railings.

Cantilever: 9.23.9.9.
$-38 \times 184\left(2^{\prime \prime} \times 8^{\prime \prime}\right)$ may not be cantilevered more than 400 (16")
$-38 \times 235$ ( 2 "x10") or larger may not be cantilevered more than 600 ( 24 ")
Bearing: 9.23.9.1. - 9.23.9.3., 9.23.3.4.(1)
-Floor joists may be supported on the tops of beams or may be supported with proper metal joist hangers.
-The floor joists must be mechanically fastened to the supporting member with two 82 (3-1/4") nails.

Bridging: 9.23.9.4.(2), 9.23.3.4.(1)
-Bridging shall consist of $19 \times 64$ (1" $\times 3^{\prime \prime}$ ) cross bridging, $38 \times 38$ ( $2^{\prime \prime} \times 2^{\prime \prime}$ ) cross bridging or solid blocking the same dimension as the supported floor joists.
-Bridging shall be located not more than $2100\left(6^{\prime}-11^{\prime \prime}\right)$ from each support or other rows of bridging.
-Bridging shall be fastened with two 57 (2-1/4") nails at each end.

## DECKING

Requirements: Table 9.23.14.5.A., 9.23.3.5.(1)
-Decking less than or equal to $184 \mathrm{~mm}\left(7-1 / 4^{\prime \prime}\right)$ wide shall be fastened with two $51 \mathrm{~mm}\left(2^{\prime \prime}\right)$ common/spiral nails or two 45 mm (1-3/4") Screws at each support.
-Decking shall consist of solid lumber at least $17.0 \mathrm{~mm}\left(11 / 16^{\prime \prime}\right)$ thick when joists are spaced $400 \mathrm{~mm}\left(16^{\prime \prime}\right)$ or less and at least $19.0 \mathrm{~mm}\left(3 / 4^{\prime \prime}\right)$ when joists are spaced more than $400 \mathrm{~mm}\left(16^{\prime \prime}\right)$.

## FASTENERS

-All fasteners used must be properly treated/coated to prevent corrosion.
-Equivalent screws may be used in lieu of nails

## STAIRS

Stairs shall conform to section 9.8 of the Ontario Building Code

## RAILING

Railings shall conform to Supplementary Standard SB-7 of the Ontario Building Code (see attached)

## GUARDS

### 9.8.8.3. Height of Guards

-Exterior guards serving not more than one dwelling unit shall be not less than $900 \mathrm{~mm}\left(36^{\prime \prime}\right)$ high where the walking surface served by the guard is not more than $1800\left(5^{\prime}-11^{\prime \prime}\right) \mathrm{mm}$ above the finished ground level, otherwise the guards shall be not less than 1070 mm ( $42^{\prime \prime}$ ) high. If a bench is incorporated into a guard the required height is measured above the bench surface.

### 9.8.8.5. Openings in Guards

-Openings through a guard shall be of a size that will prevent the passage of a spherical object having a diameter of $100 \mathrm{~mm}\left(4^{\prime \prime}\right)$.

### 9.8.8.6. Design to Prevent Climbing

-Guards shall be designed so that no member, attachment, or opening will facilitate climbing.


## ILLISTRATIONS

FROM THE "CODE AND CONSTRUCTION - GUIDE FOR HOUSING"


## PIERS

EXAMPLE: Where Require Bearing Area = 1.29 Sq. Ft. NOTE: REFER TO PIER TABLE FOR REQUIRED SIZES


$8^{\prime \prime}$ Dia. Concrete Pier With Base Expanded To 16" Dia.



6" x 6" PT Wood Post On 14" x 14" Concrete Fnntinn



Note: as an alternative to nailing, bolt members together with $\min 12.7 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ diameler bolts with washers and spaced $1.2 \mathrm{~m}\left(4^{\prime}\right)$ max o.c. with end bolls not more than 600 mm (2') from ends of the members

Figure 3.12
Nailing of Built-up Beams
(9.23.8.3)

WOOD STAIRS
W $=$ max $900 \mathrm{~mm}\left(35^{\prime \prime}\right)$ in dwelling units $W=\max 1200 \mathrm{~mm}\left(47^{\prime \prime}\right)$ in dwelling units when risers support the front of the treads unless stringers and treads designed for wider spacing
$\mathrm{W}=\max 600 \mathrm{~mm}\left(23-1 / 2^{\prime \prime}\right)$ in other than dwelling units

Tread thickness:
$A=\min 25 \mathrm{~mm}\left(1^{\prime \prime}\right)$ when risers support front of tread
$B=\min 38 \mathrm{~mm}\left(1-1 / 2^{\prime \prime}\right)$ when tread unsupporied at front and distance between stringers is no greater than 750 mm ( $30^{\prime \prime}$ )


SINGLE DWELLING UNIT INTERIOR AND EXTERIOR STAIRS
Stair dimensions as shown:
(9.8.3.1)


## UNACCEPTABLE INSTALLATION



1) FOUNDATIONS MUST REST ON UNDISTURBED NATIVE SOIL.
2) FOUNDATIONS WITHIN THE ANGLE OF REPOSE REQUIRE THE SERVICES OF A PROFESSIONAL ENGINEER.
3) NEW FOUNDATIONS MUST NOT INTERFERE WITH EXISTING FOUNDATION DRAINAGE SYSTEMS.

Table 2.2.1.
Exterior Post and Rail System Connection Details

| Connection Detail | Detail Number | Description |
| :---: | :---: | :---: |
| Top Rail to Post <br> and / or <br> Bottom Rail to Post | EA-1 | Top rail nailed to post |
|  | EA-2 | Top/bottom rail skew nailed to post with 76 mm (3") nails |
|  | EA-3 | Top/bottom rail skew nailed to post with $63 \mathrm{~mm}\left(2^{112^{\prime \prime}}\right)$ nails |
|  | EA-4 | Top/bottom rail face nailed or screwed to post |
|  | EA-5 | Top/bottom rail fastened to post with framing anchors |
| Post to Floor | EB-1 | Post nailed to rim joist |
|  | EB-2 | Post screwed to rim joist |
|  | EB-3 | Post bolted to floor joist with $8 \mathrm{~mm}\left(5 / 16^{\prime \prime}\right)$ machine bolts |
|  | EB-4 | Post bolted to floor joist with $9.5 \mathrm{~mm}\left(3 / 8^{\prime \prime}\right)$ machine bolts |
|  | EB-5 | Post bolted to 2 floor joists |
|  | EB-6 | Post fastened to floor, where guard is parallel to floor joists |
| Infill Picket | EC-1 | Picket nailed to endcap; endcap screwed to rail |
|  | EC-2 | Picket nailed to rail |
|  | EC-3 | Picket screwed to rail |
|  | EC-4 | Picket screwed to top rail and rim joist |
| Column 1 | 2 | 3 |

Table 2.2.2.
Exterior Cantilevered Picket System Connection Details

| Connection Detail | Detail Number | Description |  |  |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| Cantilevered Picket <br> (Douglas Fir-Larch, Spruce-Pine-Fir, Hem-Fir Species) | ED-1 | Picket screwed to rim joist |  |  |  |
|  | ED-2 | Picket screwed to rim joist, where guard is parallel to floor <br> joists |  |  |  |
| Cantilevered Picket <br> (Northern Species) | ED-3 | Picket screwed to rim joist and deck |  |  |  |
|  | ED-4 | Picket screwed to rim joist and deck, where guard is <br> parallel to floor joists |  |  |  |
| Cantilevered Picket <br> (Douglas Fir-Larch, Spruce-Pine-Fir, Hem-Fir Species, <br> Northern Species) | ED-5 | Corner |  |  |  |
| Column 1 |  |  |  | 2 |  |



PLAN


FRONT ELEVATION


AXONOMETRIC


SIDE ELEVATION

## Detail EA-1 <br> Exterior Connection: Top Rail Nailed to Post

Notes:

1. The top rail must be continuous. Use Detail EA-5 at the end spans, where continuity ends.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Species | Maximum Span, m (ft-in) |  |  |  |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $1.52\left(5^{\prime}-0{ }^{\prime \prime}\right)$ |  |  |  |
| Northern Species | $1.52\left(5^{\prime}-0^{\prime \prime}\right)$ |  |  |  |
| Column 1 |  |  |  | 2 |



PLAN


FRONT ELEVATION


AXONOMETRIC


SIDE ELEVATION

## Detail EA-2

Exterior Connection: Top/Bottom Rail Skew Nailed to Post - 76 mm (3") Nails
Notes:

1. The maximum span is more often governed by post spacing.
2. Provide support to bottom rail at intervals not more than $2.0 \mathrm{~m}\left(6^{\prime}-7^{\prime \prime}\right)$.
3. The bottom rail may be bevelled as detailed in Figure 2.1.2.
4. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |
| :--- | :---: |
| Species | Maximum Span, m (ft-in) |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $2.72\left(8^{\prime}-11{ }^{\prime \prime}\right)$ |
| Northern Species | $2.18\left(7^{\prime}-2^{\prime \prime}\right)$ |
| Column 1 |  |



PLAN


FRONT ELEVATION


AXONOMETRIC


SIDE ELEVATION

## Detail EA-3

Exterior Connection: Top/Bottom Rail Skew Nailed to Post - 63 mm ( $21 / 2^{\prime \prime}$ ) Nails

## Notes:

1. Provide support to bottom rail at intervals not more than $2.0 \mathrm{~m}\left(6^{\prime}-7^{\prime \prime}\right)$.
2. The bottom rail may be bevelled as detailed in Figure 2.1.2.
3. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |
| :--- | :---: |
| Species | Maximum Span, m (ft-in) |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $2.72\left(8^{8}-11^{\prime \prime}\right)$ |
| Northern Species | $2.18\left(7^{\prime}-2^{\prime \prime}\right)$ |
| Column 1 |  |



## Detail EA-4 <br> Exterior Connection: Top/Bottom Rail Face Nailed or Screwed to Post

Notes:

1. If the rails are located on the deck side of the posts, $76 \mathrm{~mm}\left(3^{\prime \prime}\right)$ nails may be used in place of the screws.
2. Where the top rail is continuous, the top rail may be fastened to each post with $3-\# 8 \times 76 \mathrm{~mm}\left(3^{\prime \prime}\right)$ screws.
3. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Maximum Span, m (ft-in) |  |  |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | 1.77 (5'-10") |  |  |
| Northern Species | 1.41 (4'-8") |  |  |
| Column 1 |  |  | 2 |



CORROSION RESISTANT FRAMING ANCHOR


PLAN


FRONT ELEVATION


AXONOMETRIC


## SIDE ELEVATION

Detail EA-5
Exterior Connection: Top/Bottom Rail Fastened to Post with Framing Anchors
Notes:

1. Provide support to bottom rail at intervals not more than $2.0 \mathrm{~m}\left(6^{\prime}-77^{\prime \prime}\right)$.
2. The bottom rail may be bevelled as detailed in Figure 2.1.2.
3. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |
| :--- | :---: |
| Species | Maximum Span, m (tt-in) |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $2.72\left(8^{\prime}-11^{\prime \prime}\right)$ |
| Northern Species | $2.18\left(7^{\prime}-2^{\prime \prime}\right)$ |
| Column 1 |  |



SEE NOTES 2 \& 3 FOR ATTACHMENT OF FIRST BOARD

FRONT ELEVATION



SIDE ELEVATION

## Detail EB-1

## Exterior Connection: Post Nailed to Rim Joist

## Notes:

1. Decking is omitted from the plan view and the axonometric view for clarity.
2. Fasten $25 \mathrm{~mm} \times 140 \mathrm{~mm}\left(5 / 4^{\prime \prime} \times 6^{\prime \prime}\right.$ nominal) outer deck board to rim joist with $63 \mathrm{~mm}\left(2^{\left.1 / 2^{\prime \prime}\right)}\right.$ nails at $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$.
3. Fasten $25 \mathrm{~mm} \times 140 \mathrm{~mm}\left(5 / 4^{" 1} \times 66^{\prime \prime}\right.$ nominal) outer deck board to floor joist with $1-63 \mathrm{~mm}\left(2^{\left.1 / 2^{\prime \prime}\right)}\right.$ nail at each joist.
4. The post may be positioned anywhere between the joists.
5. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |
| :--- | :---: |
| Species | Maximum Span, m (tt-in) |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $1.22\left(4^{\prime}-0^{\prime \prime}\right)$ |
| Northern Species | $1.20\left(3^{\prime}-11^{\prime \prime}\right)$ |
| Column 1 |  |



PLAN


AXONOMETRIC


## Detail EB-2

## Exterior Connection: Post Screwed to Rim Joist

## Notes:

1. Decking is omitted from the plan view and the axonometric view for clarity.
2. Fasten $25 \mathrm{~mm} \times 140 \mathrm{~mm}\left(5 / 4^{\prime \prime} \times 6^{\prime \prime}\right.$ nominal) outer deck board to rim joist with $63 \mathrm{~mm}\left(2^{\left.1 / 22^{\prime \prime}\right)}\right.$ nails at $300 \mathrm{~mm}\left(12^{\prime \prime}\right)$.
3. Fasten $25 \mathrm{~mm} \times 140 \mathrm{~mm}\left(5 / 4^{\prime \prime} \times 6^{\prime \prime}\right.$ nominal) outer deck board to floor joist with $1-63 \mathrm{~mm}\left(2^{1 / 2 "}\right)$ nail at each joist.
4. The post may be positioned anywhere between the joists.
5. \#9 screws may be replaced by \#8 screws if the maximum spacing between posts is not more than $1.20 \mathrm{~m}\left(3^{\prime}-11^{\prime \prime}\right)$.
6. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPAN OF RAIL BETWEEN POSTS |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Maximum Span, m (ft-in) |  |  |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $1.56\left(5^{\prime}-1{ }^{\prime \prime}\right)$ |  |  |
| Northern Species | $1.20\left(3^{\prime}-11^{\prime \prime}\right)$ |  |  |
| Column 1 |  |  | 2 |



PLAN


FRONT ELEVATION


## AXONOMETRIC



SIDE ELEVATION

## Detail EB-3

Exterior Connection: Post Bolted to Floor Joist - 8 mm (5/16") Bolts

## Notes:

1. Decking is omitted from the plan view and the axonometric view for clarity.
2. $38 \mathrm{~mm}\left(11 / 2^{n \prime}\right)$ post projection is not required where the maximum spacing between posts does not exceed $1.20 \mathrm{~m}\left(3^{\prime}-11^{\prime \prime}\right)$.
3. Joists may be spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right)$ o.c. or $406 \mathrm{~mm}\left(16^{\prime \prime}\right)$ o.c.
4. Where floor joists are spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right) 0 . c$. ., decking shall have a minimum thickness of $38 \mathrm{~mm}\left(11 / 2^{\prime \prime}\right)$ and shall be fastened to the floor with $2-76 \mathrm{~mm}\left(3^{\prime \prime}\right)$ nails.
5. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPACING BETWEEN POSTS |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Maximum Span, m (ft-in) |  |  |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $1.29\left(4^{\prime}-3 "\right)$ |  |  |
| Northern Species | $1.20\left(3^{\prime}-11^{\prime \prime}\right)$ |  |  |
| Column 1 |  |  | 2 |



AXONOMETRIC


FRONT ELEVATION


SIDE ELEVATION

## Detail EB-4 <br> Exterior Connection: Post Bolted to Floor Joist - 9.5 mm (3/8") Bolts

## Notes:

1. Decking is omitted from the plan view and the axonometric view for clarity.
2. $38 \mathrm{~mm}\left(1 \frac{1}{2} 2^{\prime \prime}\right)$ post projection is not required where the maximum spacing between posts does not exceed $1.20 \mathrm{~m}\left(3^{\prime}-11^{\prime \prime}\right)$.
3. Joists may be spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right)$ ) o.c. or $406 \mathrm{~mm}\left(16^{\prime \prime}\right)$ o.c.
4. Where floor joists are spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right)$ o.c., decking shall have a minimum thickness of $38 \mathrm{~mm}\left(11 / 2^{\prime \prime}\right)$ and shall be fastened to the floor with 2-76 mm (3") nails.
5. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPACING BETWEEN POSTS |  |
| :--- | :---: |
| Species | Maximum Span, m (ft-in) |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $1.49\left(4^{\prime}-11^{\prime \prime}\right)$ |
| Northern Species | $1.20\left(3^{\prime}-11^{\prime \prime}\right)$ |
|  | 2 |



AXONOMETRIC


SIDE ELEVATION

## Detail EB-5 <br> Exterior Connection: Post Bolted to 2 Floor Joists

## Notes:

1. Decking is omitted from the plan view and the axonometric view for clarity.
2. $38 \mathrm{~mm}\left(1 \frac{1}{2} 2^{\prime \prime}\right)$ post projection is not required where the maximum spacing between posts does not exceed $1.20 \mathrm{~m}\left(3^{\prime}-11^{\prime \prime}\right)$.
3. Joists may be spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right)$ o.c. or $406 \mathrm{~mm}\left(16^{\prime \prime}\right)$ o.c..
4. Where floor joists are spaced at $610 \mathrm{~mm}\left(24^{\prime \prime}\right)$ o.c. decking shall have a minimum thickness of $38 \mathrm{~mm}\left(1 / 2^{\prime \prime}\right)$ and shall be fastened to the floor with $2-76 \mathrm{~mm}\left(3^{\prime \prime}\right)$ nails.
5. Dimensions shown are in mm unless otherwise specified.

| MAXIMUM SPACING BETWEEN POSTS |  |  |  |
| :--- | :---: | :---: | :---: |
| Species | Maximum Span, m (tt-in) |  |  |
| Douglas Fir-Larch, Hem-Fir, Spruce-Pine-Fir | $2.14\left(7^{\prime}-0^{\prime \prime}\right)$ |  |  |
| Northern Species | $1.20\left(3^{\prime}-11^{\prime \prime}\right)$ |  |  |
| Column 1 |  |  | 2 |



## Detail EB-6

Exterior Connection: Post Fastened to Floor, Guard Parallel to Floor Joists

## Notes:

1. Use any of the connection details shown on Details EB-1 to EB-5 at location "A". Connection Detail EB-4 is shown in this detail, as an example.
2. Maximum spacing between posts is determined from connection detail used at location "A".
3. Decking is omitted from the plan view and the axonometric view for clarity.
4. Blocking shall be not less than $38 \mathrm{~mm} \times 184 \mathrm{~mm}$ ( $2^{\prime \prime} \times 8^{\prime \prime}$ nominal).
5. Dimensions shown are in mm unless otherwise specified.



## AXONOMETRIC



SIDE ELEVATION

FRONT ELEVATION

## Detail EC-1

Exterior Connection: Infill Picket Nailed to Endcap - Endcap Screwed to Rail
Notes:

1. Fasten each end of each picket to endcaps with $2-50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ nails.
2. Fasten endcaps to rails with $\# 7 \times 50 \mathrm{~mm}\left(2^{\prime \prime}\right)$ screws at 300 mm (12") o.c.
3. See Table 2.1.2. for minimum sizes of pickets.


PLAN BOTTOM RAIL


FRONT ELEVATION


SIDE ELEVATION

## Detail EC-2

Exterior Connection: Infill Picket Nailed to Rail
Notes:

1. See Table 2.1.2. for minimum sizes of pickets.
2. Dimensions shown are in mm unless otherwise specified.


Detail EC-3
Exterior Connection: Infill Picket Screwed to Rail


PLAN


FRONT ELEVATION


AXONOMETRIC

## Detail EC-4

Exterior Connection: Infill Picket Screwed to Top Rail and Rim Joist
Note:

1. Dimensions shown are in mm unless otherwise specified.


PLAN


FRONT ELEVATION


AXONOMETRIC

\#8 x $63 \mathrm{~mm}\left(21 / 2{ }^{\prime \prime}\right)$
SCREWS @ 200 ( $\left.8^{*}\right)$

- SEE NOTE 5
$2-\# 8 \times 63 \mathrm{~mm}\left(21 / 2^{n}\right)$ SCREWS PER CONNECTION WITH JOISTS
THROUGH $25 \times 140\left(5 / 4^{\prime \prime} \times 6^{\prime \prime}\right)$
DECKING (OUTER BOARD ONLY)
-SEE NOTE 5



SIDE ELEVATION

## Detail ED-1

## Exterior Connection: Cantilevered Picket Screwed to Rim Joist

## Notes:

1. Provide a suitable post, return, or solid support at each end of the guard.
2. Wood for cantilevered pickets shall be Douglas Fir-Larch, Spruce-Pine-Fir, or Hem-Fir Species.
3. Fasten rim joist to each floor joist with $3-82 \mathrm{~mm}\left(31 / 4^{\prime \prime}\right)$ nails.
4. Dimensions shown are in mm unless otherwise specified.
5. The outer deck board shall not be less than 140 mm ( $6^{\prime \prime}$ nominal) wide. Where 38 mm ( $2^{\prime \prime}$ nominal) thick boards are used, the length of the wood screws shall be not less than $76 \mathrm{~mm}\left(3^{\prime \prime}\right)$.


PLAN


FRONT ELEVATION


AXONOMETRIC


SIDE ELEVATION

## Detail ED-2

Exterior Connection: Cantilevered Picket Screwed to Rim Joist, Guard Parallel to Floor Joists

Notes:

1. Provide a suitable post, return, or solid support at each end of the guard.
2. Wood for cantilevered pickets shall be Douglas Fir-Larch, Spruce-Pine-Fir, or Hem-Fir Species.
3. Fasten rim joist to blocking with $3-82 \mathrm{~mm}\left(3^{1 / 4} 4^{\prime \prime}\right)$ nails.
4. Dimensions shown are in mm unless otherwise specified.
5. Where 38 mm ( $2^{\prime \prime}$ nominal) thick boards are used, the length of the wood screws shall be not less than $76 \mathrm{~mm}\left(3^{\prime \prime}\right)$.


PLAN


FRONT ELEVATION


SIDE ELEVATION

## Detail ED-3

Exterior Connection: Cantilevered Picket Screwed to Rim Joist and Deck
Notes:

1. Provide a suitable post, return, or solid support at each end of the guard.
2. Wood for cantilevered pickets shall be Northern Species.
3. Fasten rim joist to each floor joist with $3-82 \mathrm{~mm}\left(3^{\left.1 / 4^{\prime \prime}\right)}\right.$ nails.
4. Dimensions shown are in mm unless otherwise specified.


PLAN


FRONT ELEVATION


## Detail ED-4

Exterior Connection: Cantilevered Picket Screwed to Rim Joist and Deck, Guard Parallel to Floor Joists

## Notes:

1. Provide a suitable post, return, or solid support at each end of the guard.
2. Wood for cantilevered pickets shall be Northern Species.
3. Fasten rim joist to blocking with $3-82 \mathrm{~mm}\left(3^{1 / 4} 4^{\prime \prime}\right)$ nails.
4. Dimensions shown are in mm unless otherwise specified.


PLAN TOP RAIL


AXONOMETRIC

ONE FASTENER IN HORIZONTALLY ORIENTATED PORTION OF TOP RAIL AND TWO IN VERTICALLY ORIENTATED PORTION.


FRONT TOP RAIL


SIDE TOP RAIL

## Detail ED-5

Exterior Connection: Corner Joint

## Notes:

1. Screws fastening pickets are omitted for clarity.
2. Provide a minimum of 10 pickets beyond the return if end restraint of the guard is provided by this return detail only.

## THE APPROVAL PROCESS

Depending on the complexity of your project, your application may be reviewed in three stages:

1) Planning Department staff will check for compliance with the regulations and provisions of the zoning by-law such as proposed use, minimum setback requirements, lot coverage and building height, etc.
2) Building Department staff will review the proposed construction to ensure compliance with the Ontario Building Code.
3) Engineering Department staff will review the project for compliance with lot grading and servicing requirements.

If during the review an examiner identifies deficiencies on the drawings or requires additional information, the designer and/or applicant will be notified.

Please ensure that the necessary information is submitted promptly, as subject to the type of deficiency no further processing may occur until the information is received.

When the review of your application is completed and all requirements have been met, your building permit will be available. Applicant will be notified.

* It is unlawful to start construction without the necessary permits. If you start construction without the necessary permits, you may be ordered to stop work, ordered to remove work already done, or prosecuted. THE PERMIT FEE WILL BE DOUBLED.
** Once you receive your permit, ensure that the permit and approved drawings are available on the construction site.


## Inspections

Construction may commence upon issuance of the Building Permit. Several inspections are required to ensure that all work is done according to the approved plans including changes noted by the plans examiner. Your will be issued a list of the required inspections for your specific project.

Examples of construction stages when inspections are required are on the attached copy of an 'Order Not to Cover'.

Inspections do not happen automatically. It is your responsibility to ensure that either you or your contractor contacts the Town to request an inspection at least 24
hours before work proceeds from one inspection stage to the next. This will ensure that your project proceeds as approved.

Failure to have inspections performed may result in having to uncover and expose work for inspections. For inspections call 905-372-1005.

Other Inspections

- Electrical
- Plumbing
- Gas
* Remember to call for the location of utilities before you dig

| CONTACTS |  |
| :--- | :--- |
| Building \& Planning Department | Engineering Department |
| 55 King Street West | 55 King Street West |
| Victoria Hall | Victoria Hall |
| Cobourg ON K9A 2M2 | Cobourg ON K9A 2M2 |
| 905-372-1005 | $905-372-4555$ |
| Lakefront Utilities (LUSI/LUI) | Ganaraska Region Conservation |
| 207 Division Street | Authority (GRCA) |
| P.O. Box 577 | P.O. Box 328 |
| Cobourg ON K9A 4L3 | Port Hope, ON L1A 3W4 |
| 905-372-2193 | $905-885-8173$ |
| District Health Unit | Plumbing Inspection |
| 200 Rose Glenn Road | Northumberland County |
| P.O. Box 90 | 555 Courthouse Road |
| Port Hope ON L1A 3V6 | Cobourg ON K9A 5J6 |
| $905-885-9100$ | $905-372-1929$ |
| Electrical Safety Authority | Fire Department |
| Electrical Inspection | 111 Elgin Street East |
| Peterborough ON | Cobourg ON K9A 1A1 |
| 1-877-372-7233 | $905-372-9789$ |
| Ontario One Call | Union Gas |
| (Underground Locates) | 1-888-774-3111 |
| 1-800-400-2255 |  |

The Building Code Act and the Ontario Building Code can be found online at:

WWW.e-laws.gov.on.ca
Search for "Building Code"'

